miércoles, 29 de febrero de 2012

UNIDAD III BIOLOGIA MOLECULAR


SEP                      SNEST                      DGEST



INSTITUTO TECNOLÓGICO DE CIUDAD ALTAMIRANO




UNIDAD III

ORGANIZACIÓN DEL MATERIAL GENÉTICO


QUE PRESENTA:

LAURA ORTEGA TORRES

08930125


CARRERA LIC . BIOLOGÍA


Ciudad Altamirano, Gro. México. Febrero 29-02- del 2012

UNIDAD III
ORGANIZACIÓN DEL MATERIAL GENÉTICO
INTRODUCCION
El material genético se compacta en un área discreta de la célula formando los cromosomas. Éstos se encuentran en los virus, células procariotas, en el núcleo de células eucariortas y en cloroplastos y mitocondrias.
MATERIAL GENÉTICO EN VIRUS
La mayoría de los virus, presenta un sólo cromosoma formado por ADN o ARN que puede ser unicatenario, bicatenario, lineal o circular.
Los fagos de bacterias están rodeados por una cubierta de proteínas e inyectan su cromosoma al interior de la bacteria. El cromosoma del virus puede seguir dos rutas dependiendo del tipo de fago que sea:
  • FAGO VIRULENTO: siempre sigue la ruta lítica.
  • FAGO TEMPERADO: pueden seguir la ruta lítica pero normalmente siguen la ruta lisogénica según la cual el fago está en la célula como un profago.

3.1 ORGANISMOS PROCARIÓTICOS
Los organismos procarióticos son unicelulares, es decir, cada célula es capaz de desarrollar todas las funciones vitales. En los casos de asociaciones coloniales, cada una de las células conserva su individualidad e independencia.
Muchos organismos eucarióticos, en cambio, han alcanzado una organización pluricelular con distintos tipos de células que desempeñan funciones diferentes dentro del mismo organismo.Las células procarióticas se caracterizan porque no poseen un verdadero núcleo y, por lo mismo, su material genético (ADN) se encuentra disperso en el citoplasma. Se pueden distinguir tres grandes tipos de organismos procarióticos: cianobacterias, bacterias y micoplasmas. En estas células no existe membrana nuclear y la sustancia nuclear se mezcla o se encuentra en contacto directo con el resto del protoplasma. Desde el punto de vista histórico, es interesante recordar que Haeckel postuló en 1868, como forma primitiva de sustancia organizada, a la llamada "monera", es decir, "masas  de proteínas homogéneas y amorfas", que él pensó se formaban directamente de la sustancia inorgánica.

3.1.1 ADN CIRCULAR
ADN CIRCULAR

Genomas procarióticos
El genoma de la mayoría de los procariontes esta formado por un único cromosoma. Normalmente es una molécula de DNA de doble cadena cerrada y circular. Existen excepciones como la bacteria Borrelia burgdorfei, cuyo cromosoma es una cadena lineal!. Algunos genomas bacterianos están formados por varios cromosomas distintos.

3.1.2 PROTEÍNAS ASOCIADAS
Proteínas asociadas
Arquitectura del genoma en procariotas: El DNA en bacterias se  organiza en un nucleótido
Que se forma por un superenrrollamiento
Superenrollamiento (supercoiling)
. Superenrollamiento puede ser positivo (p.e. arqueas) o negativo (eubacterias).
- Superenrollamiento (-): la molécula torsionada gira hacia la derecha
- Superenrollamiento (+): gira a la izquierda.
. El superenrollamiento es una forma de liberar la tensión torsional producida por la adición (+) o sustracción (-) de vueltas en una molécula circular de DNA.
El superenrollamiento en E. coli está regulado por unos enzimas denominados DNA girasa y topoisomerasa I.
 
Nucleoide: cromosoma circular superenrollado.








 3.1.3 ADN EXTRACROMOSÓMICO.



 

3.1.3.1 PLÁSMIDOS.

Los plásmidos son moléculas de ADN extracromosómico circular o lineal que se replican y transcriben independientes del ADN cromosómico. Están presentes normalmente en bacterias, y en algunas ocasiones en organismos eucariotas como las levaduras. Su tamaño varía desde 1 a 250 kb. El número de plásmidos puede variar, dependiendo de su tipo, desde una sola copia hasta algunos cientos por célula. El término plásmido fue presentado por primera vez por el biólogo molecular norteamericano Joshua Lederberg en 1952.
Las moléculas de ADN plasmídico, adoptan una conformación tipo doble hélice al igual que el ADN de los cromosomas, aunque, por definición, se encuentran fuera de los mismos. Se han encontrado plásmidos en casi todas las bacterias. A diferencia del ADN cromosomal, los plásmidos no tienen proteínas asociadas.
En general, no contienen información esencial, sino que confieren ventajas al hospedador en condiciones de crecimiento determinadas. El ejemplo más común es el de los plásmidos que contienen genes de resistencia a un determinado antibiótico, de manera que el plásmido únicamente supondrá una ventaja en presencia de ese antibiótico.
Hay algunos plásmidos integrativos, es decir, que tienen la capacidad de insertarse en el cromosoma bacteriano. Estos rompen momentáneamente el cromosoma y se sitúan en su interior, con lo cual, automáticamente la maquinaria celular también reproduce el plásmido. Cuando ese plásmido se ha insertado se les da el nombre de episoma.
Los plásmidos se utilizan en ingeniería genética por su capacidad de reproducirse de manera independiente del ADN cromosomal así como también porque es relativamente fácil manipularlos e insertar nuevas secuencias genéticas.
Los plásmidos usados en Ingeniería Genética suelen contener uno o dos genes que les confieren resistencia a antibióticos y permiten seleccionar clones recombinantes. Hay otros métodos de selección además de la resistencia a antibióticos, como los basados en fluorescencia o en proteínas que destruyen las células sin uso de antibióticos. Estos nuevos métodos de selección de plásmidos son de uso frecuente en agrobiotecnología, debido a la fuerte crítica de grupos ecologistas contra la posibilidad de presencia de antibióticos en los organismos modificados genéticamente.



3.1.3.2 BACTERIÓFAGOS. 
FAGO BACTERIANO

Los fagos son ubicuos y pueden ser encontrados en diversas poblaciones de bacterias, tanto en el suelo como en la flora intestinal de los animales. Uno de los ambientes más poblados por fagos y otros virus es el agua de mar, donde se estima que puede haber en torno a 109 partículas virales por mililitro, pudiendo estar infectadas por fagos el 70% de las bacterias marinas.
  
Bacteriofagos
Los virus son moléculas de DNA o RNA rodeadas por una envoltura proteica que necesitan células viables para poder replicarse. Los virus utilizan la maquinaria metabólica de las células para sintetizar su material genético y proteínas de la envoltura. Existen distintos tipos de virus que pueden infectar células procariontes o células eucariontes. Los bacteriófagos o fagos son virus que se reproducen en células procariontes.
El genoma de los fagos puede ser RNA simple cadena (MS2, Qß), RNA doble cadena (phi 6), DNA simple cadena (phi X174, fd, M13) o DNA doble cadena (T3, T7, lambda , T5, Mu, T2, T4). Estos ácidos nucleicos pueden contener bases inusuales que son sintetizadas por proteínas del fago. En los T-pares el genoma no contiene citosina sino 5'- hidroximetilcitosina, mientras que en otros tipos de fago alguna de las bases esta parcialmente sustituida. 
  Esquema del Ciclo de Replicación de un Bacteriófago T4

Adsorción:  
El virus se fija o adsorbe a componentes de la superficie celular que actúan como receptores específicos. La zona de adsorción del virus es complementaria al receptor celular, por lo tanto un determinado virus sólo puede infectar un número limitado de cepas celulares que contengan a un determinado receptor. La naturaleza de la zona de adsorción varía con el tipo de fago. En el T4 se localiza en el extremo de la cola, en donde se encuentran la placa basal, las espículas y las fibras de la cola.
 Inyección del material genético viral:  
Después de la adsorción, se produce un cambio configuracional en las proteínas de la placa basal, alguna de las cuales tienen actividad enzimática y producen un poro en la membrana citoplasmática de la célula. La vaina del fago se contrae y el material genético viral ingresa en la célula, mientras que la envoltura proteica queda en el exterior. 
 Replicación del material genético viral: 
El material genético viral que ingresa en una célula contiene bases modificadas que evitan la degradación por nucleasas bacterianas. Esta modificación consiste en la glicosilación y/o metilación de algunas determinadas bases. En el caso del fago T4 se glucosila la base 5'-hidroximetilcitosina. Para lograr una efectiva replicación del genoma viral se deben sintetizar algunas proteínas ni bien el material genético ingresa en la célula. Esta proteínas tempranas reparan el poro de la membrana citoplasmática por donde ingresó el genoma viral, degradan el DNA bacteriano lo que proporciona una fuente de precursores, evita la síntesis de RNA y proteínas bacterianas, y proporciona ribosomas para la síntesis de proteínas del fago. Además algunas de estas proteínas tempranas participan en la síntesis de las bases inusuales. La forma de replicación del genoma viral es dependiente del tipo de material genético (si es RNA o DNA, si es simple o doble cadena). En el caso del fago T4, las moléculas replicadas se aparean en los extremos y formando una molécula de DNA más larga denominada concatámero. Después una enzima corta esta larga molécula lineal en moléculas más pequeñas de igual longitud. Las moléculas de DNA del T4 tienen se caracterizan por estar permutadas circularmente (el DNA del T4 es lineal) de esta forma todas las moléculas de DNA resultantes contienen genes completos y funcionales. La enzima del T4 que corta al concatámero produce moléculas de DNA de tamaños similares pero no reconoce sitios específicos sobre la molécula, en cambio la enzima del T7 reconoce sitios específicos sobre el DNA.
Síntesis de las envolturas proteicas: 
Las proteínas de la envoltura (cápside, vaina, fibras, etc) son proteínas tardías que se sintetizan después de iniciada la replicación del material genético. La síntesis de cada componente proteico se realiza separadamente. En el caso del fago T4, el material genético es encapsidado antes del ensamble del resto de los componentes.
Ensamble: 
Todas las proteínas de la envoltura se ensamblan para formar una partícula viral madura capaz de infectar a otra célula cuando sea liberada.
Lisis celular y liberación de las partículas virales: 
 La lisis celular se debe a la síntesis de proteínas tardías codificadas en el genoma del fago. En el fago T4, estas proteínas son enzimas que lesionan la membrana citoplasmática y la pared celular.
 
3.1.3.3 TRANSPOSONES   
 
Un transposón o elemento genético transponible es una secuencia de ADN que puede moverse de manera autosuficiente a diferentes partes del genoma de una célula, un fenómeno conocido como transposición. En este proceso, se pueden causar mutaciones y cambio en la cantidad de ADN del genoma. Anteriormente fueron conocidos como "genes saltarines" y son ejemplos de elementos genéticos móviles.
El transposón modifica el ADN de sus inmediaciones, ya sea arrastrando un gen codificador de un cromosoma a otro, rompiéndolo por la mitad o haciendo que desaparezca del todo. En algunas especies, la mayor parte del ADN basura (hasta un 50% del total del genoma) corresponde a transposones.

TRANSPOSON BACTERIANO


Transposones procarióticos
- Tipos
La clasificación se basa principalmente en los genes que aparecen
Tipo I
Se conocen como transposones simples o secuencias de inserción (IS) lo que en 700 o 2000 pb contienen el gen TnpA que codifica la transposasa flanqueado por dos secuencias invertidas repetidas cortas (15 a 25 pb).
Tipo II
Contienen al menos tres genes: una transposasa (TnpA), una resolvasa (TnpR) y un gen que suele ser de resistencia a antibióticos. Eso se encuentra flanqueado por secuencias repetidas invertidas (IR) a la izquierda (IR-L) y a la derecha (IR-R).
Tipo III
Aquellos fagos que, en lugar de insertarse en el genoma por recombinación —lo normal—, lo hace mediante transposición. El más conocido es el fago μ


3.2 ORGANISMOS EUCARIÓTICOS:  
Organismos eucarióticos sencillos, entre los seres más sencillos que hay existe una enorme diversidad de organismos. Se distinguen entre si por su tamaño, organización, por su forma y por su modo de vida. El reino Protoctista está formado por los protozoos y las algas, que tienen una sencilla estructura. Están formados por células eucarióticas, es decir, poseen un núcleo delimitado por una membrana. Todos los protozoos son organismos unicellulares, y, desde luego, microorganismos. Por el contrario, algunas algas están formadas por muchas células y pueden verse a primera vista, aunque otra son unicelulares. Son también organismos muy sencillos.


3.2.1 ADN LINEAL Y EMPAQUETAMIENTO   
 
Estructura tridimensional de los cromosomas nucleares.
Una célula humana contiene alrededor de 2 metros de DNA (1 metro por cada serie cromosomica). El cuerpo humano está constituido por unas 1013 células y cada célula es diploide, por lo que contiene en total unos 2x1013 metros de DNA.
La distancia de la tierra al sol es 1,5 x 1011 metros…
Ello significa que el DNA de nuestro cuerpo podría extenderse hasta el sol y volver casi 100 veces!!!!Este hecho significa que el DNA de las eucariotas debe estar empaquetado de una forma muy eficaz
3.2.1.1 HISTONAS 
 
De hecho el empaquetamiento ocurre en el núcleo donde el DNA se condensa en 46 cromosomas, todo ello en un núcleo de 0,006 mm de diámetro! Para entender como ocurre esto hay que conocer la estructura tridimensional de los cromosomas.
Al microscopio los cromosomas aparece como fibras de 30 nm de diámetro, o que indica que la molécula de DNA debe estar muy plegada.
Histonas. La mezcla completa de materiales  de los que se compone el cromosoma se conoce como cromatina. Se trata de DNA y proteínas.
Las histonas son proteínas asociadas al DNA en los nucleososmas. Los nucleosomas (10 nm) están formados por un octamero compuesto por dos unidades de cada una de las histonas (H2A, H2B, H3 Y H4).

3.2.1.2 SOLENOIDES 
El DNA (asociado a las histonas) da dos vueltas alrededor de cada octamero de los nucleosomas (ver figura), el nucleosoma es una forma distendida, de una forma muy enrollada denominado solenoide (30 nm) , el solenoide mantiene su forma mediante otra histona H1.
Para conseguir el primer nivel de empaquetamiento el DNA se enrolla alrededor de las histonas, que actúan, como bobinas de un hilo, un nuevo enrollamiento genera la conformación del solenoide.

3.2.1.3 CROMOSOMAS 
 
Los cromosomas se encuentran muy enrollados, si un solenoide tiene de diámetro 30 nm, un cromosoma condensado tiene 700 nm. Para esto el solenoide se enrolla sobre un esqueleto proteico compuesto de la enzima topoisomerasa II, que es capaz de pasar una cadena de DNA a través de otra. 



3.2.2 COMPLEJIDAD DEL GENOMA 

La naturaleza de los genes
Los genes se diferencian unos de otros por su función y por su tamaño, pero en la mayoría de ellos puede observarse una serie de rasgos topológicos comunes.

Las principales regiones de un gen
un gen es una región de DNA cromosómico que puede trascribirse en una molécula de RNA funcional en el momento y lugar adecuados del proceso de desarrollo de un organismo. Para que esto ocurra un extremo de un gen contiene una región reguladora, es decir un segmento de DNA con una secuencia especifica de nucleótidos que le permita recibir y responder a señales de otras partes del genoma o del ambiente celular. En el otro extremo del gen existe una región encargada de terminar la trascripción.
En resumen:


3.2.3 ADN MITOCONDRIAL. 
Los cromosomas de mitocondrias y cloroplastos son de DNA de doble cadena.Los cromososmas de los orgánulos contienen genes específicos de las funciones que lleva cabo el organulo, sin embargo la mayoría de funciones del organulo están codificadas en el núcleo. Las mitocondrias y cloroplastos probablemente se originaron por endosimbiosis de una procariota.
Las mitocondrias  se encuentran en todos los seres eucariotas aerobios; contienen las enzimas para la mayor parte de las reacciones oxidativas que generan energia para las funciones celulares. Estas enzimas incluyen a la piruvato-deshidrogenasa, a las involucradas en el transporte de electrones, en la fosforilación oxidativa, en el ciclo del Krebs, y en la oxidación de los acidos grasos. Actualmente se conocen las secuencias completas del ADN de varios genomas mitocondriales. Al ADN mitocondrial se lo conoce como ADNmt (mtDNA).

3.3 ORGANIZACIÓN GENÓMICA VIRAL
Un virus es una particula no viva que solo puede reproducirse a si misma infectando una celula viva y modificando la maquinaria celular de la huésped para general una descendencia de particulas virales. Los virus estan formados por una cubierta proteica y un núcleo central que contiene su genoma.
Los genomas virales son muy distintos entre si, muchos estan compuestos de ADN, que cuando estan empaquetados puede ser de cadena sencilla y cadena doble. Algunos virus como el HIV (retrovirus) contiene genomas de RNA, algunos de cadena sencila y otros de cadena doble. Algunos genomas virales contienen DNA y RNA circulares.
Independiente del genoma del virus hay siempre una fase intracelular del ciclo infectivo, en la cual este genoma se convierte en DNA de cadena doble..

En los pequeños genomas de plasmidos, organulos y virus, los genes se encuentran cercanos unos  a otros, casi sin espacio intergénico (tambien en bacterias) y es copletamente distinto al genoma de animales y plantas, donde estos espacios son mucho mayor.


No hay comentarios:

Publicar un comentario